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Abstract

The problem of file synchronization (making two, differently modified copies of a filesystem the same
again without losing information) emerges in many cases, and is solved in many different ways. Our goal
was to create a general mathematical model for file synchronization and use it as a basis to define the
behavior of a synchronizer.

We developed a specific algebraic model on filesystem commands and proved that it is sound and
complete for its intended interpretation on real systems, that is, if commands are considered to be
equivalent according to the algebra then they are equivalent when applied to a real filesystem and vice
versa.

Then we defined algorithms for synchronization using our algebra and created an implementation
which was tested on various filesystems. This method turned out to be an effective way to create the
specification of a synchronizer since it simplified both the definition and the implementation.

The methods used in the proofs for soundness and completeness are likely be usable on other algebras,
too. Thus using algebraic approach could make it possible to extend the synchronizer to other types of
datasystems and to create a general theory of synchronization in the future.
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1 Introduction

If we have multiple copies (called replicas) of a filesystem or a part of a filesystem (for example on a laptop
and on a desktop computer), it is often the case that changes are made to each replica independently and
as a result they do not contain the same information. In that case, a file synchronizer is used to make them
similar (consistent) again, without losing any information.

The goal of a file synchronizer is to detect conflicting updates and propagate non–conflicting updates on

each replica. Due to the various cases of file updates and the various behaviors of filesystem commands it is
difficult to give a complete and correct definition of its behavior.

It can be helpful in solving this problem if we have a formalized mathematical model for describing file
synchronization.

We investigated algebraic models of synchronization in a specific case to see the properties of such a
system and the method of proving theorems in it which will hopefully aid us in creating a general theory
of synchronization based on algebraic structure in the future. This specific case was the synchronization of
filesystems.

In the paper we develop an algebraic representation of filesystem commands. Then we show that this
model is both complete and sound, and after that we define the expected behavior of a file synchronizer and
create its specification with the help of our algebra.

This method will hopefully simplify the specification as well as the implementation of the synchronizer,
and it might make it possible to extend the synchronizer to other types of datasystems, such as mail folders
or databases.

1.1 The main idea of synchronization

In general, there are two phases of the task of a synchronizer: update detection, when the program recognizes
where updates have been made since the last synchronization and reconciliation, when it combines updates
to yield a new, synchronized version of each replica. If there are no conflicting updates, then at the end of
the synchronization the replicas will be the same. Otherwise a synchronizer may leave them unchanged at
paths where conflicts occurred and warn the user.

In this paper, we focus on the commands that were applied to these replicas while they were modified
independently. The main aim of a synchronizer is to perform all commands on all replicas.

Let us introduce some notation. We have the original system, O; and the present replicas R1, R2, . . . Rn.
Somehow we know the sequences of commands which were applied to O in each replica (for example from
the update detector). They are S1, S2, . . . Sn. The synchronizer algorithm will provide us commands on each
replica (S∗

1 , S∗

2 , · · ·S∗

n) which lead each replica to a common state O′ if possible.
In order to determine each sequence S∗

i , we take all commands applied to the systems (S1∪S2∪· · ·∪Sn)
then omit commands in Si which were already applied to replica Ri.

But that way we only gain a set of commands without order. We must order it somehow to be able
to apply the commands to the system. For it is possible that some orders cause errors in a filesystem (for
example, trying to remove a directory before removing the files in it). It is also possible that not all error–free
orders have the same effect on the filesystem. For example, modifying the contents of a file to “xxx” and
modifying them to “yyy” are not commutable commands: they leave the system in different states if applied
in different order. In this case the synchronizer cannot synchronize the systems fully, since “last modifying
wins” is not a good solution in every case. Therefore the aim of the synchronizer is to find commands for
which all error–free orders have the same effect and apply them to the system.

The reason we may have two differently ordered sequences of commands which do not lead a system to
the same state is that we have incommutable pairs of commands in them. This is because if all pairs of
commands commuted (that is, pair of commands C1;C2 had the same effect on a system as C2;C1) then
clearly one of the sequences could be changed to the other one by commuting commands without any change
in the effect of the sequence on the system.

Because of this, we focused on the commutability of pairs of commands. We defined this property with
the help of an algebraic proof system on commands.
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2 Definitions

2.1 The filesystem

We introduce some known notation on filesystems and paths.
A filesystem can be broken (F = ⊥) or it can be a function mapping whole paths to their contents. The

filesystem is broken if a command caused an error, for example deleting a directory with files under it.
A path is either empty (/), or a finite sequence of names separated by /. The concatenation of paths π

and ϕ can be written as π/ϕ. We write π � γ iff π is a prefix of γ, i.e., if γ = π/α for some path α which
might be empty. We also write π ≺ γ if π is a proper prefix of γ, that is, π � γ and π 6= γ. If we refer to
the contents of path π in filesystem F , we write simply F (π).

In the paper, πsub always refers to a file or directory under π, that is, π ≺ πsub. For πεsub, π � πεsub

holds. The same for the opposite direction: πsup ≺ π and πεsup � π. Paths π and ϕ are usually incomparable
paths.

In a filesystem, the contents of a path can be broken (F (π) = ⊥, if the file or directory does not exist),
they can be a file (F (π) = XFile) or a directory (F (π) = YDir). We also write X or Y for some unspecified
but non-⊥ contents. Both files and directories can carry additional information (modtimes, permissions, the
bytes in a file, etc.), which we leave unspecified, simply writing the contents as shown above.

Filesystems are functions and are compared using extensional equality. Two filesystems F1 and F2 are
equivalent iff (F1 = ⊥) ∧ (F2 = ⊥), or ∀π : F1(π) = F2(π).

We write F{π 7→ X} for the function that is like F , except it maps π to X. So

F{π 7→ X}(γ) =

{

X, if π = γ

F (γ), otherwise

We write childlessF (π) iff F (π) has no descendants, i.e. ∀γ : π ≺ γ =⇒ F (γ) = ⊥.
parent(π) denotes the path which immediately precedes π, that is, for some name p, parent(π)/p = π.
S always refers to sequences of commands. SF is the filesystem obtained by applying all commands in

S to F . We may also write a command instead of S. S1;S2 refers to the concatenation of sequences S1 and
S2.

We have some restrictions on filesystems: all filesystems must satisfy the tree property, that is, if π ≺ γ
and F (γ) 6= ⊥ then F (π) = XDir. It means that every path which has a descendant must be a directory.

2.2 Commands

Now we introduce the basis of our algebra: the commands on filesystems.
At first, we considered using four commands: create, remove, edit and move, as the most common

commands on a filesystem. Later, move turned out to be hard to handle in the algebra. We decided
to introduce this command only in the user interface, after running the synchronizer. We also needed a
command to reason about commands that cause errors (break). So we took another set of commands; it
consists of the commands create, remove, edit and break. In appendix C we provide an argument to justify
using a move–free algebra.

All the commands have the following property: if applied to a filesystem, then it either breaks the system
(command(π,X)F = ⊥) or command(π,X)F = F{π 7→ X}; that is, if a command does not break the
filesystem, it only affects the filesystem at the path on which it was applied.

Now we define the exact behavior of each command. Applied to the broken filesystem, they all have
the same effect: leaving the filesystem in the broken state. Otherwise, the definition of their effect is the
following:

• create(π,X) modifies F (π) to X iff F (π) is broken and its parent is a directory; i.e.

create(π,X)F =

{

F{π 7→ X}, iff F (π) = ⊥ ∧ F (parent(π)) = YDir

⊥, otherwise.
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• The command edit can change the type of a path (file or directory), according to its second argument.
Since the tree–property must be preserved, the definition is:

edit(π,XDir)F =

{

F{π 7→ XDir}, iff F (π) 6= ⊥

⊥ otherwise;

edit(π,XFile)F =

{

F{π 7→ XFile} iff F (π) 6= ⊥ ∧ childlessF (π)

⊥ otherwise.

• remove(π) only removes files or directories without files:

remove(π)F =

{

F{π 7→ ⊥} iff F (π) 6= ⊥ ∧ childlessF (π)

⊥ otherwise.

• break breaks the filesystem:
breakF = ⊥ for every F .

We write skip for the empty sequence of commands.

3 Algebra on commands

In order to reason about commands, we define algebraic laws on commands. We use formal logic to build a
proof system which is sound and complete for its intended interpretation.

For sequences S1 and S2, we have two kinds of judgements:

• S1 ≡ S2, or S1 is algebraically equivalent to S2. Its intended interpretation is that they act the same
on all filesystems, i.e. ∀F : S1F = S2F .

• S1 ⊑ S2, or S2 extends S1; its intended interpretation is the following: if S1 ⊑ S2 and S1F 6= ⊥ then
S1F = S2F .

The axioms of our proof system are the laws listed in Table 1. We have two inference rules, one for each
judgement.

3.1 The laws

We created the laws with the help of pairs of commands. Lines in the last section are not axioms; they are
written there to list all possible pairs.

How many pairs do we have? From edit, create and remove, we can choose a pair of commands in 9 ways.

Moreover, there are four types of path-pairs: π; π, πsub; π, π; πsub and π; ϕ. That makes 4× 9 cases. With break, we

have 3 × 2 cases with an other non–break command (there are 3 of them and they can follow or precede break) and

one case when we have a pair made of two breaks. Thus, we have 4 × 9 + 3 × 2 + 1 = 43 pairs.

We subdivide some laws containing edit because of edit’s different behavior when modifying paths to
files or to directories. These laws are numbered with A or B. Extension laws (that is, where the relation is
⊑, not ≡) are marked with E.

3.2 Inference rules

An inference rule makes it possible to derive new statements from axioms or others statements known to be
already true. The inference rules are:
For any sequences S1, S2, S, S′:



Elod Pal Csirmaz Theory of File Synchronization 7

Commuting laws

1. edit(π, X); edit(πsub, Y ) ≡ edit(πsub, Y ); edit(π, X)
2. edit(πsub, Y ); edit(π, X) ≡ edit(π, X); edit(πsub, Y )
4AE . create(πsub, Y ); edit(π, XDir) ⊑
edit(π, XDir); create(πsub, Y )
5A. edit(π, XDir); remove(πsub) ≡
remove(πsub); edit(π, XDir)
6A. remove(πsub); edit(π, XDir) ≡
edit(π, XDir); remove(πsub)
7. edit(π, X); edit(ϕ, Y ) ≡ edit(ϕ, Y ); edit(π, X)
8. edit(π, X); create(ϕ, Y ) ≡ create(ϕ, Y ); edit(π, X)
9. edit(π, X); remove(ϕ) ≡ remove(ϕ); edit(π, X)
10. create(ϕ, Y ); edit(π, X) ≡ edit(π, X); create(ϕ, Y )
11. create(π, X); create(ϕ, Y ) ≡
create(ϕ, Y ); create(π, X)
12. create(π, X); remove(ϕ) ≡ remove(ϕ); create(π, X)
13. remove(ϕ); edit(π, X) ≡ edit(π, X); remove(ϕ)
14. remove(ϕ); create(π, X) ≡ create(π, X); remove(ϕ)
15. remove(π); remove(ϕ) ≡ remove(ϕ); remove(π)

Breaking laws

3B. edit(π, XFile); create(πsub, Y ) ≡ break
4B. create(πsub, Y ); edit(π, XFile) ≡ break
5B. edit(π, XFile); remove(πsub) ≡ break
16. edit(π, X); create(π, Y ) ≡ break
17. edit(πsub, X); create(π, Y ) ≡ break
18. edit(πsub, X); remove(π) ≡ break
19. create(π, X); edit(πsub, Y ) ≡ break
20. create(π, X); create(π, Y ) ≡ break

21. create(πsub, X); create(π, Y ) ≡ break
22. create(π, X); remove(πsub) ≡ break
23. create(πsub, X); remove(π) ≡ break
24. remove(π); edit(π, X) ≡ break
25. remove(π); edit(πsub, X) ≡ break
26. remove(π); create(πsub, X) ≡ break
27. remove(πsub); create(π, X) ≡ break
28. remove(π); remove(π) ≡ break
29. remove(π); remove(πsub) ≡ break

Simplifying laws

30E . edit(π, X); edit(π, Y ) ⊑ edit(π, Y )
31. edit(π, X); remove(π) ≡ remove(π)
32. create(π, X); edit(π, Y ) ≡ create(π, Y )
33E . create(π, X); remove(π) ⊑ skip

34E . remove(π); create(π, X) ⊑ edit(π, X)

Laws for break

35. break; edit(π, X) ≡ break
36. break; create(π, X) ≡ break
37. break; remove(π) ≡ break
38. edit(π, X); break ≡ break
39. create(π, X); break ≡ break
40. remove(π); break ≡ break
41. break; break ≡ break

Remaining pairs
(no substitution)

3A. edit(π, XDir); create(πsub, Y ) ⊒
create(πsub, Y ); edit(π, XDir)
6B. remove(πsub); edit(π, XFile)
42. create(π, X); create(πsub, Y )
43. remove(πsub); remove(π)

Table 1: Algebraic laws

• if S1 ≡ S2 then S;S1;S
′ ≡ S;S2;S

′

• if S1 ⊑ S2 then S;S1;S
′ ⊑ S;S2;S

′

• if S1 ≡ S2 then S1 ⊑ S2.

The first inference rules merely substitute part of a sequence for another sequence. If “S1 ≡ S2” or “S1 ⊑ S2”
is a law itself, we say that we applied the law to the sequence S;S1;S

′.

3.3 Soundness theorem

In order to be able to use our algebra, we must show that algebraic relation between sequences also means
that the sequences act the same on filesystems. It can be proven that for every two sequences of commands

S ≡ S∗ =⇒ ∀F : SF = S∗F,

(S ⊑ S∗) ∧ (SF 6= ⊥) =⇒ ∀F : SF = S∗F.

The proof for the two cases are very similar. Induction is used on the number of times inference rules are
applied to the sequences. The soundness of each individual law (which can be done by investigating a number
of cases) and the inference rules is shown separately.
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For the detailed proof see Appendix A.

3.4 Theorem of completeness

In this section, we show that our proof system is complete for its interpretation. This is also mandatory to
be able to use our algebra.

Let us introduce some notation. We write S1 ‖ S2, or S1 and S2 have a common upper bound iff
∃S∗ : S1 ⊑ S∗∧S2 ⊑ S∗, that is, iff both S1 and S2 can be extended to the same sequence. It is a symmetric
relation, but not transitive. S1 ≡ S2 =⇒ S1 ⊑ S2 =⇒ S1 ‖ S2 also holds.

Now we prove that if two sequences of commands act the same on any filesystem neither of them breaks,
and there is a filesystem neither of them breaks then they have a common upper bound. Formally,

∀S, S′ :
((∀G : (SG 6= ⊥ ∧ S′G 6= ⊥) =⇒ SG = S′G)
∧
(∃F : SF 6= ⊥ ∧ S′F 6= ⊥)
=⇒ S ‖ S′),

where G and F refer to filesystems.
In the proof we define minimal sequences in the following way: consider the set of sequences ℘S =

{S∗|S ⊑ S∗}. Because of our preconditions, the sequence break is not in ℘S (if it was, that is, S ⊑ break,
SF = ⊥ would hold since by definition SF = (break)F if SF 6= ⊥).

Let S0 be (one of) the shortest sequence(s) in ℘S and, similarly, S′

0 (one of) the shortest sequence(s) in
℘S′ . These sequences are called minimal sequences. It can be shown that for every G which satisfies the
condition SG 6= ⊥ ∧ S′G 6= ⊥, S0G = S′

0G 6= ⊥ applies. As a special case, we know that S0F = S′

0F 6= ⊥.
The proof has three main steps.

i. We have some constraints on S0 and S′

0. Since they do not break every filesystem, no breaking laws
can be applied to them. And since they have minimal length, we cannot apply a simplifying law either.
From these properties we can prove that there is at most one command on each path in a minimal
sequence. (If there were more, such a law would be applicable.)

ii. We know that a command on path π only affects the filesystem at π if it does not break the filesystem.
Therefore S0 and S′

0 must contain commands on the same paths since they do not break F and
S0F = S′

0F , that is, they modify F at the same points. And we can also prove that the sequences
must contain the same commands on each path from the fact that they act the same on every G.
Therefore they consist of the very same commands.

iii. We prove that S0 and S′

0 can be reordered by commuting laws so that they would be the same sequences.
That is, a sequence S∗ exists for which S0 ⊑ S∗ ⊒ S′

0. It means that S ⊑ S0 ⊑ S∗ ⊒ S′

0 ⊒ S′, i.e.
S ‖ S′.

In appendix B we provide the detailed version of the proof.

Now, since we know that our algebra is sound and complete for its intended interpretation, we can use it
to define the specification of the file synchronizer.

4 Definition of conflicting commands

We define conflicting updates using minimal sequences provided by the update detector algorithm. Actually,
we define conflicting pairs of commands since only two modifications can interfere with each other. Later,
every command will be marked as a conflicting command if it is a member of a conflicting pair.

Let us consider two commands, CA(π) ∈ SA and CB(γ) ∈ SB , where SA is the minimal sequence which
leads the original filesystem O to replica A and, similarly, SB leads O to replica B.

Now CA and CB are conflicting commands iff
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(CB 6∈ SA) ∧ (CA 6∈ SB)

and one of the following holds:

• ¬(CA(π);CB(γ) ‖ CB(γ);CA(π)) (they do not commute), or

• CA(π);CB(γ) ≡ break, or CB(γ);CA(π) ≡ break
(they break every filesystem).

We write C1 ↔ C2 if C1 and C2 are conflicting commands. Clearly this relation is symmetrical, i.e.,
C1 ↔ C2 =⇒ C2 ↔ C1.

In appendix D we try to find a relation between this definition and another one found in the paper of
Balasubramaniam and Pierce.

5 Algorithm for reconciliation

In this section we provide an algorithm for reconciliation. The reconciler algorithm takes the sequences
leading from the original filesystem to the replicas (S1, S2, . . . Sn), and creates sequences of commands for
each replica S∗

1 , S∗

2 , . . . S∗

n which make the filesystems as close as possible.
When creating the algorithm, we keep in mind the following:

a command C ∈ S1 ∪ S2 ∪ . . . ∪ Sn should be propagated to replica Ri iff:

• C is not already applied to Ri

• there are no conflicts on command C

• there are no conflicts on any command which must precede C

Why do we need the last criterion? Consider the following case: in the original replica we had O(π) = XFile.

We have modified replica A with the following commands: edit(π, YDir); create(π/p, WFile). Replica B has been

modified by the sole command edit(π, ZFile). Now edit(π, YDir) and edit(π, ZFile) are conflicting commands, so we

cannot apply edit(π, YDir) to replica B. But that way, we cannot propagate create(π/p, WFile) to it, either.

A command C1 must precede command C2 iff ¬(C1;C2 ‖ C2;C1), it originally preceded C2, and they
appear in the same sequence Si.

Now, in order to preserve the order of commands in sequences S1, S2, . . . Sn, we define the reconciler
algorithm as follows:
To determine S∗

i :

1. Detect conflicting commands between sequences

2. Detect command which must follow conflicting commands

3. Omit these commands from all sequences

4. Omit commands in Si from all other sequences

5. Define S∗

i as S1;S2; . . . Si−1;Si+1; . . . Sn

Or, more formally:

FOR every sequence Si

FOR each command C ∈ Si

FOR every sequence Sj

IF C should be propagated to replica Rj THEN

append C to S∗

j .
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We can get the sequences of conflicting commands using a similar algorithm. The combined reconciler
produces two sequences for every replica: the first one (S∗

i ) can be applied to the replica immediately, while
the second one containing the conflicting commands (SC

i ) needs the user’s or (other algorithms’) help to be
resolved.

See Appendix E for the test results of an implementation of the algorithm.

6 Conclusion

We have built an algebra of commands on filesystems. We have also proved that the algebra is sound and
complete, that is, commands which are algebraically equivalent are also equivalent on real filesystems, and
vice versa.

We have defined conflicts with the help of this algebra, and defined algorithms for update–detection
and reconciliation. We have also implemented these algorithms and tested them on numerous cases (see
Appendix E). The results have always been in accordance with what we expected from the philosophy
“propagate every command possible on every replica”. Because of that, using algebraical methods in file
synchronization has turned out to be an effective solution.

We have also gained some insight into the provability of such theorems and algebras. The methods we
have used in the proofs are likely be able to be used in proofs for other algebras as well, thus they might
form the basis for a more general theory of synchronization.
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A Proof for the soundness theorem

Let us repeat our statement: We prove that for every two sequences of commands

S ≡ S∗ =⇒ ∀F : SF = S∗F,

S ⊑ S∗ ∧ SF 6= ⊥ =⇒ ∀F : SF = S∗F.

Both statement is true if our axioms and inference rules are sound since we can only gain equivalent (or
extending) sequences from axioms or by using inference rules.

First, we prove the soundness of our inference rules. The proof for the first two inference rules are quite
similar. For the first one, we know that the intended interpretation of S1 ≡ S2 is true and our statement is
that for every S, S′, the interpretation of S;S1;S

′ ≡ S;S2;S
′ holds. We know that for every filesystem F ,

(S;S1;S
′)F = S′(S1(SF )) and similarly ((S;S2;S

′)F = S′(S2(SF )). We know that for every G, S1G = S2G
holds, and therefore as a special case S1(SF ) = S2(SF ). Thus ∀F : (S;S1;S

′)F = ((S;S2;S
′)F . This is the

interpretation of our statement.
For the second law, we know that the interpretation of S1 ⊑ S2 is true and we show that in that case

S;S1;S
′ ⊑ S;S2;S

′ is also true for all filesystems. We know that for every F if S1F 6= ⊥ then S1F = S2F .
If (S;S1;S

′)F = ⊥ then the relation is clearly true (since it only refers to the points where the filesystem is
not broken). In the other case, if (S;S1;S

′)F = S′(S1(SF )) 6= ⊥, we know that SF 6= ⊥ since a filesystem
cannot be made non–broken again by applying commands to it. Now since S1 ⊑ S2 is true, therefore
either S1(SF ) = ⊥ and the relation is true similarly to the case above; or S1(SF ) 6= ⊥ and therefore
S1(SF ) = S2(SF ) 6= ⊥ and S′(S1(SF )) = S′(S2(SF )) 6= ⊥.

The soundness proof of the third law is quite simple since if two sequences act the same on all filesystems
then they act the same on a subset of the filesystems, too.

It remains to show the soundness of each individual law, but all the laws were derived from the definitions
of the commands. For precise proofs, Appendix F shows an example.

Our theorem is proved.

B Proof of the completeness theorem

Let us repeat our theorem and introduce minimal sequences again:

∀S, S′ :
((∀G : (SG 6= ⊥ ∧ S′G 6= ⊥) =⇒ SG = S′G)
∧
(∃F : SF 6= ⊥ ∧ S′F 6= ⊥ ∧ SF = S′F )
=⇒ S ‖ S′),

where G and F refer to filesystems.
In the proof, by F , we mean a filesystem which satisfies the second condition. By G, we refer to any

filesystem which satisfies SG 6= ⊥ ∧ S′G 6= ⊥.
Now consider the set of sequences ℘S = {S∗|S ⊑ S∗}. Because of our preconditions, the sequence break

is not in ℘S (if it was, that is, S ⊑ break, SF = ⊥ would hold since by definition SF = (break)F if SF 6= ⊥).
Let S0 be (one of) the shortest sequence(s) in ℘S and, similarly, S′

0 (one of) the shortest sequence(s) in
℘S′ . The following holds for these sequences:

(SG 6= ⊥ ∧ S′G 6= ⊥ =⇒ ) SG = S′G = S0G = S′

0G 6= ⊥.

Proof. Since SG 6= ⊥ ∧ S ⊑ S0 =⇒ SG = S0G and S′G 6= ⊥ ∧ S′ ⊑ S′

0 =⇒ S′G = S′

0G; and since
SG 6= ⊥ ∧ S′G 6= ⊥ by assumption SG = S′G 6= ⊥ holds, we have S0G = SG = S′G = S′

0G 6= ⊥.
As a special case, we also know that SF = S′F = S0F = S′

0F 6= ⊥.

Now let us investigate these “minimal” sequences.
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B.1 Investigating the command edit

We know that the command edit(π,XDir) commutes or collapses (i.e., a commuting or a simplifying law
can be applied to it) with every command on its left side (see Laws 1, 2, 7, 10, 13, 6A, 19, 24, 25, 30E , 32,
4AE). We also know that edit(π,XFile) does the same on its right side (see Laws 1, 2, 7, 8, 9, 3B, 5B, 16,
17, 18, 30E , 31). From Laws 1, 2 and 30E we know that edits commute amongst each other.

Therefore in a minimal sequence all edit(π,XDir) commands can be moved to the beginning, and all
edit(π,XFile) commands to the end of the sequence. Since they commute amongst themselves, we can order
the two groups alphabetically. Therefore if there were two commands on the same path, they would be
neighbors and would be simplified by the algebraic laws. Therefore we can be sure that there are at most
one edit(π,XFile) or edit(π,XDir) command on each path.

That way we also separated these commands from the other ones. Now we focus on the remaining part:
on the create and remove commands.

B.2 Investigating create and remove

We will prove some lemmas about minimal sequences.

Lemma 0 If a sequence is minimal, then it cannot have any pairs of commands that match the left-hand
sides of Laws 16–41, 3B, 4B, 5B. Also, if we apply any of the commutative laws (1, 2, 4AE , 5A, 6A,
7–15), the resulting sequence is still minimal.

Proof. For the first part, the laws mentioned all give an equivalent shorter sequence, but by hypothesis,
there is no equivalent shorter sequence. For the second part, the commutative laws do not change the
length of a sequence.

Lemma 1 It is impossible that a command remove(π) precedes (not necessarily as a neighbor)
a command remove(πεsub) in a minimal sequence. (A parent cannot be removed before any
descendant, or more precisely, 6 ∃i, j : i < j ∧ S[i] = remove(π) ∧ S[j] = remove(π′) ∧ π � π′.)

· · · S[i] : remove(π) S[j] : remove(πεsub) · · ·

Proof. By contradiction; we assume there is such an i and j, and we show that implies S ⊑ break.

We show the contradiction by induction on j − i. The base case is j = i + 1. In this case, by Laws
28 and 29, S[i];S[i + 1] ⊑ break, and therefore S ⊑ break.

For the induction step, we perform a case analysis on S[j − 1].

• If it mentions a path that is disjoint with πεsub, we can swap it with S[j] to get an equivalent
sequence, and by the induction hypothesis and transitivity of equivalence, S ⊑ break.

• Also by Lemma 0 (Laws 22, 23, and 33E), it cannot be a non-disjoint create operation. (Note
that there are no edit operations in this part of the sequence according to our preconditions.)

• If S[j − 1] = remove(π̂), if π̂ � πεsub, then by laws 28 and 29, S[j − 1];S[j] ≡ {break}, and
therefore S ⊑ {break}. But if πεsub ≺ π̂, then by transitivity π � π̂, so the induction hypothesis
applies, and again S ⊑ break.

Lemma 2 A command create(π) cannot precede a command remove(πεsub). Proof. This can be
proved the same way, only the base case differs; now create(π); remove(πεsub) equals break or expands
to skip by Law 22 and 33E . The induction step is the same.

Lemma 3 A command remove(πεsub) cannot precede a command create(π). Proof. This can be
proved similarly, in this case the base step is remove(πεsub); create(π) equals break or expands to edit
(Law 27 and 34E); in the induction step we can prove that if S[j − 1] = create(πsup) precedes S[j] =
create(π), according to the induction hypothesis, S ⊑ break (we know that πsup ≺ π). Otherwise the
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commands would be able to be simplified (which contradicts the precondition that /(S/) is a minimal
sequence) or commuted (and therefore the induction hypothesis still holds). (Laws 11, 12, 20, 21, 26,
27, 34E .)

Lemma 4 A command create(πεsub) cannot precede a command create(π). Proof. We obtain this
result from Lemma 3: the base step is create(πεsub); create(π) ≡ (⊑)break (Law 15); the induction
step is the same.

Lemma 5 A command create(πεsub) cannot precede a command remove(π). Proof. Our base step
now is S[j − 1];S[j] = create(πεsub); remove(π) ⊑ skip or equals break according to Laws 33E and
23. But in our induction step, we go in the opposite direction and perform analysis on S[i + 1]. If
S[i + 1] = create(πεsubsub) follows S[i] = create(πεsub), the induction hypothesis applies, therefore
S ⊑ break. Otherwise the commands can be simplified or commuted (Laws 24, 20, 21, 22, 23, 33E .)

Lemma 6 It is impossible that a command remove(π) precedes a command create(πεsub). Proof.

Now our base step is remove(π); create(πεsub) ⊑ edit or equals break (Laws 34E and 26). In the
induction step we examine command S[i + 1]. If it is not commutable or simplifyable, it can be only
remove(πsup). In that case the induction hypothesis applies.

B.3 More lemmas on commands

Let us return to the edit commands to prove two additional lemmas.

Lemma E1 A command remove(π) cannot precede a command edit(π,XFile). Proof. By con-
tradiction; we assume there are such two commands in the sequence, S[i] = remove(π) and
S[j] = edit(π,XFile) where i < j. We use induction on j − i. The base step is when j − i = 1.
Now, according to Law 24, S ≡ break which contradicts our condition on S. For the induction step,
we assume that S ⊑ break if S[j − 1] = edit(π,XFile). Now we investigate S[j − 1]. If it is not
remove(πsub), then a commuting (or simplifying) law can be applied to S[j − 1];S[j]. That way
S[j − 1] would be edit(π,XFile), and according to the induction hypothesis S ⊑ break. If S[j − 1] is
remove(πsub), we have the same result by Lemma 1.

Lemma E2 A command create(π) cannot precede a command edit(π). Proof. The same; last step
is made according to Lemma 2.

Lemma E3 A command remove(π) cannot follow a command edit(π,XDir). Proof. This proof is
also very similar to the above ones. The base step is edit(π,XDir); remove(π) ≡ remove(π) (Law 31).
In the induction step we investigate command S[i + 1]. If it is not create(πsub), a commuting (or
simplifying) law can be applied. If it is, we have S ⊑ break according to Lemma 5.

Lemma E4 A command create(π) cannot follow a command edit(π,XDir). Proof. The same; last
step according to Lemma 4.

Keeping in mind that we have all the edit commands at the ends of the sequence, it follows from Lemmas
E1, E2, E3 and E4 that there cannot be an edit and another command on the same path.

Lemma E5 A command edit(π,XDir) cannot precede a command edit(π,XFile). Proof. Now we
know that between these commands there are no commands on path π. We also know from Lemmas
1–6 that there is at most one remove or create command on each path. Therefore there cannot be a
create(πsub) command since we would have to remove it before modifying π to a file. Thus we could
have moved edit(π,XDir) to the end of the sequence and simplified it with edit(π,XFile).
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B.4 Conclusions

As a result of the lemmas we know that there is at most one command on each path in a minimal sequence.

Now we can prove that C ∈ S0 ⇐⇒ C ∈ S′

0 for any command C. (Without loss of generality, it is enough
to prove that C ∈ S0 =⇒ C ∈ S′

0.)

• create(π,X) ∈ S0 =⇒ create(π,X) ∈ S′

0. Proof. By contradiction. First of all, we know that
F (π) = ⊥, as otherwise S0 would break F , and that would contradict our assumption. Now assume that
create(π,X) 6∈ S′

0. We have three cases. If there is no command on path π in S′

0, then S′

0F (π) = ⊥, and
therefore S0F (π) 6= S′

0F (π), that is, S0F 6= S′

0F , which contradicts our assumption that S0F = S′

0F .
If there was a command edit or remove on path π, it would break F since F (π) = ⊥ and that again
contradicts the precondition.

• remove(π) ∈ S0 =⇒ remove(π) ∈ S′

0. Proof. Now we can be sure that F (π) 6= ⊥ and S0F (π) = ⊥.
If (instead of remove) there was no command on π in S′

0, then S′

0F (π) 6= ⊥ would hold. In case of
edit, S′

0F (π) 6= ⊥ would hold (contradicting S0F (π) = ⊥). create would break F since F (π) 6= ⊥.
Again, we have contradiction in all cases.

• edit(π,X) ∈ S0 =⇒ edit(π,X) ∈ S′

0. Proof. Similarly we cannot have create or remove on path π
in sequence S′

0 since F (π) 6= ⊥ and S′F (π) = SF (π) 6= ⊥. But now we might have no commands on
π in S′

0: that way if F (π) = X, then S0F (π) = X and S′

0F (π) = X, too. But clearly ¬(S0 ‖ S′

0). To
prove that this is also impossible, we need the first condition about all filesystems.

Define H as F{π 7→ Y } where Y has the same type (file/directory) as F (π). If SF 6= ⊥, then SH 6= ⊥
since no command breaks the filesystem because of the contents (not the type) of a file or directory.
Also, S′F 6= ⊥ =⇒ S′H 6= ⊥. Now, as a special case of S0G = S′

0G (note that SH 6= ⊥ ∧ S′H 6= ⊥
holds) we know that S0H = S′

0H. But S0H(π) = edit(π,X)H(π) = X and S′

0H(π) = H(π) = Y . We
have a contradiction, therefore the lemma is proved.

This means that S0 and S′

0 contain the same commands; they can be different only in the order of the
commands.

Now we will show that they can be made exactly the same by the commuting algebraic laws.
We know that edits can be moved to the ends of the sequences and ordered. Let us suppose they are

already arranged this way. Since we know that the two sequences contain the same commands, these parts
of the sequences are the same. Therefore we can omit them in the discussion. Now we focus on creates and
removes as we did above.

If there are two commands in a minimal sequence referring to comparable directories, according to the
lemmas, they can only be

• create(π) . . . create(πsub)

• remove(πsub) . . . remove(π).

Therefore any two create or remove commands in a (minimal) sequence can be freely interchanged if
they refer to incomparable directories, but they have a well–defined order otherwise. (Please keep in mind
that we have no edit commands in these parts of the sequences.) That is, we have a partial order over the
set of these commands. Note that we cannot have cycles in this order (since that way π would be equal to
one of its descendants). Because of this, there is always a minimal element, which has no predecessors. Also,
this ordering is the same on both sequences.

We prove that the commands can be ordered the same way by induction on the length of the sequences.
If it is 1, the problem can be solved easily. If the length of the sequences are i > 1, we can choose a command
from S0 which has no preceding commands (i.e., a command which must precede it). It is sure that it has
no preceding commands in S′

0. We can move this command to the front of the sequences. Now the rest of
the sequences have length i − 1, therefore they can be ordered according to the induction hypothesis.
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We obtain S∗

0 by applying this method to S0, and S′

0

∗

by applying it to S′

0. Since they contain the
same commands, and the resulting order is the same, S∗

0 and S′

0

∗

are exactly the same. Now we have
S ⊑ S0 ⊑ S∗

0 ≡ S′

0

∗

⊒ S′

0 ⊒ S′, that is, S ‖ S′. Our theorem is proved.

C A solution for update-detection for a move–free algebra

First, we provide an example which explains why we chose to work on move–free algebra.

C.1 Moving and removing subtrees

When trying to determine the minimal sequence of commands which has been applied to the original filesys-
tem O so that we get its present state A we should try to move or remove subtrees instead of (re)moving
all files in it in order to gain the most simple sequence possible. We can achieve this by counting the files
under a directory. If most of them has to be moved, we should we move the subtree first and then the rest
of the files back to their original place (majority voting).

C.2 Problems with move

But, unfortunately, difficulties emerge when using such commands.
First of all, consider the following situation: we have files X/1,X/2,X/3,X/4,X/5,X/6 in filesystem O.

In replica A, we have moved X/1, . . . X/4 to Y/1, . . . Y/4. In replica B, we have moved only X/1,X/2 under
the new directory Y .

In replica A, without using commands on subtrees, we’d have move X/1 → Y/1,X/2 → Y/2,X/3 →
Y/3,X/4 → Y/4. But using subtree–moving, we’ll notice that using move X → Y, Y/5 → X/5, Y/6 → X/6
would be shorter, so this is our sequence of commands. In replica B, move X/1 → Y/1,X/2 → Y/2 is the
shortest way.

Now we want to choose commands from each sequence so that they would not cause a conflicting update
if propagated on other replicas. It is easily provable that such subsequences of commands do not exist.
We reached the conclusion that it is not always the shortest sequence that should be used to generate the
interleaving; or, in other words, we should be able to change the sequences according to the algebraic laws
before choosing. It would make the problem much more complicated since we have many possibilities here as
well as when choosing the subsequences. Using move, we also have a very complicated relationship among
the commands considering which two can commute and which two not. (Note that move is the only function
which modifies two paths at the same time.)

Therefore, we decided to focus on a move–free algebra and delay detecting possibilities of simplification
(subtree–detection) until after update–detection and reconciliation.

C.3 A simple algorithm for update–detection

With no moves and subtree–commands, a simple algorithm can be used for update–detection. It takes
information from the filesystems and gives a minimal sequence of commands which will make one similar to
the other.

Let PO be all the paths in the original filesystem, and PA all the paths in the current state of the replica.
(We assume O,A 6= ⊥.) For every π ∈ PO ∪ PA, add the following command to sequence S:

• create(π,X) iff O(π) = ⊥ and A(π) = X 6= ⊥,

• edit(π,X) iff O(π) 6= ⊥ and A(π) = X 6= ⊥ and X 6= O(π),

• remove(π) iff O(π) 6= ⊥ and A(π) = ⊥.

Then arrange the commands so that
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• all edit(π,XDir) commands precede all other commands,

• all edit(π,XFile) commands follow all other commands,

• create(π,X) commands precede create(πsub, Y ) commands,

• remove(πsub,X) commands precede remove(π, Y ) commands.

This can be done by the method discussed below.
First, we move all edit(π,XDir) commands to the front, and then all edit(π,XFile) commands to the end

of the sequence. Now for the middle part, we know the following:
Since there is only one command on each path, we have a partial ordering on the set of the commands

(see section B.4) showing us which command must precede another one. Two commands can be interchanged
if they refer to incomparable paths; otherwise, they are one of the following:

• create(π) . . . create(πsub)

• remove(πsub) . . . remove(π).

That is, every create must precede all other creates on its descendants and all removes must precede removes
on their parents.

This ordering can be represented by a graph. This graph is a tree (or forest). It is worth noting that
every tree of the forest is formed by the same commands, removes or creates, since two different types of
commands cannot show up at comparable paths.

Starting at the leaves of the trees, we move the leaves as close as possible to their parent. (They will
form a row at the left side of the branch–command at the remove–trees and at the other side at create–
trees.) Then we order them alphabetically and form a group–command from the leaves and the branch.
This group–command will act like a single command since all of its members commute the same commands.
Then we continue this method until every tree is grouped into one meta-group–command. We order these
groups again. That way we gain an order of the commands. We will gain the same order for the same set of
commands every time.

We know that SO = A since because of the ordering it does not break the filesystem. Also, S is a
minimal sequence. Proof. By contradiction. If S′ is shorter than S, then we have a path ϕ on which we
have a command in S but not in S′ since all paths are different in S. Now we know that SF (ϕ) 6= F (ϕ)
but S′F (ϕ) = F (ϕ). (Note that we have no superfluous commands in S since we gained it from the update
detector algorithm.)

D Equivalence of definitions of conflicting updates

In this section we try to find a relation between a definition for conflicting updates found in the paper of
Balasubramaniam and Pierce ([2]) and our definition.

D.1 Detecting conflicts using “dirtiness”

In the paper of Balasubramaniam and Pierce, an update–detection method is described which, when applied
to filesystems O and A, gives a set dirtyA for which the following holds:

• π 6∈ dirtyA =⇒ A(π) = O(π) holds where O is the original filesystem (Definition 3.1.1 in the paper
of Balasubramaniam and Pierce).

• dirtyF is up–closed for any filesystem, that is, if π � πεsub and πεsub ∈ dirtyF , then π ∈ dirtyF (Fact
3.1.3).
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This set is a safe estimate of paths where updates have been made, that is, it may contain paths where the
replica has not changed.

According to the paper, there is a conflict at path π iff π ∈ dirtyA, dirtyB and A(π) 6= B(π) and
(A(π) 6= XDir) ∨ (B(π) 6= YDir). We write conflict(π) if there are conflicting updates at path π according
to this definition. (Definition 4.1.2)

D.2 Does a conflict at paths imply that there are conflicting commands?

Consider the following case. We have the original filesystem:

O = {root 7→ XDir;
root/dir 7→ YDir;
root/dir/file 7→ ZFile}

In replica A, we apply the following commands to O: remove(root/dir/file); remove(root/dir). In replica B,
we use remove(root/dir/file). Now, according to the definitions in subsection D.1, root/dir/file ∈ dirtyA

and root/dir ∈ dirtyA. We know that root/dir/file ∈ dirtyB and therefore root/dir ∈ dirtyB (dirtyB is
up–closed). Thus we have a conflicting command at path root/dir, because it is dirty in both replicas and
A(root/dir) = ⊥, so one of the filesystem entries at that path is not a directory.

If we investigate this case using sequences, there is no conflict. Since we know that SA =
remove(root/dir/file); remove(root/dir) and SB = remove(root/dir/file), we can apply the second com-
mand in SA to replica B because it does not conflict with any command in SB. (We think this case is not a
conflicting update, however, some file synchronizers, like unison, detect such an update here.)

Therefore, conflicting paths do not imply conflicting commands.

D.3 A conflict at commands implies a conflict at paths

We prove this theorem for two replicas.
We prove that if we have filesystems O,A,B 6= ⊥ and we have the minimal sequences SA and SB and

the dirty–sets dirtyA and dirtyB from the update–detectors, then if we have conflicting commands in the
sequences we also have conflicts based on dirtiness.

The fact that we gained the sequences from update–detectors allows us to assume that there are no
superfluous commands in the sequences, e.g. a command which leaves the filesystem in the same state.

Since we cannot distinguish between directories by their contents in the model of the paper of Balasub-
ramaniam and Pierce, we have some preconditions.

Our theorem is true if:

• commands do not modify directories to directories (that is, O(π) = XDir =⇒ edit(π, YDir) 6∈ SA or
SB) and

• all directories have the same contents (that is, for any F and G, if F (π) is a directory and G(γ) is a
directory then F (π) = G(γ));

• and there are no superfluous commands in SA and SB .

First of all, notice that CA(π) ↔ CB(γ) can be true only if π � γ or γ � π. (Otherwise they would
commute.) Without loss of generality suppose the first one is true. Now we know: CA(π) ↔ CB(πεsub),
where πεsub = γ.

Our theorem is that
if CA(π) ↔ CB(πεsub) then conflict(π),

that is, there is a dirty–conflict at path π.
Proof. We know that CA(π) ∈ SA, therefore O(π) 6= SAO(π) where O is the original filesystem (remember

that there are no superfluous commands). Hence π ∈ dirtyA according to the definition of this set.
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The same holds for CB(πεsub), therefore πεsub ∈ dirtyB . This implies that π ∈ dirtyB since dirtyB is
up–closed.

Now we need to show that A(π) or B(π) is not a directory. Suppose that both of them are directories.
That is, A(π) = SAO(π) = XDir. In other words (SA is minimal) CA(π)O(π) = XDir since there are no
other command on this path. Thus CA(π) is create(π,XDir) or edit(π,XDir), but we can be sure that
O(π) 6= XDir because otherwise we would edit (modify) a directory to a directory, and by assumption we
cannot do that.

We also know that B(π) = SBO(π) = XDir since we do not distinguish between directories. Since we
know that O(π) 6= XDir, we must have a command on π in SB , namely C∗

B(π). This command can be
either create(π,XDir) or edit(π,XDir), but it is equivalent to CA(π) since we must use create in both cases
if O(π) = ⊥ and edit if O(π) = XFile. But then CA(π) ∈ SB since CA(π) = C∗

B(π) ∈ SB, which contradicts
the definition of conflicting commands.

We also need to show that A(π) 6= B(π). If so, similarly to the above, CA(π) = C∗

B(π) would hold.
Now we know that every condition of a dirty–conflict holds. Our theorem is proved.

E Implementation

We created an implementation based on the algorithms described in Section 5 and Appendix C.3. Its
main purpose was to verify that the algorithms are implementable and they work as we expect them. The
program is written in Perl and it runs under UNIX systems. It handles two replicas and does not modify
the filesystems; it only detects updates and conflicts among commands. Then it provides the sequences of
commands which should be applied to the replicas.

It uses no archives of the filesystems, therefore we also provide it the original version of the replicas. This
is because the implementation was built to examine the algorithms, not to make a complete synchronizer.
It also does not simplify the outcoming sequences with move commands or commands on subtrees.

When referring to the contents of directories, it looks at the writable flags of a directory. That is, the
contents of two directories are different if one of them is writable for the program and the other one is not.

The brief description of its method is the following:

1. It creates flat representations of the original filesystem and the replicas O(), A(), B().

2. Update–detection: it defines the minimal sequences SA, SB for which SAO = A and SBO = B.

3. It orders these sequences using the method discussed in section C.3.

4. Reconciling: it detects conflicting commands in sequences.

5. It provides sequences S∗

A and S∗

B for reconciliation.

6. It provides a list of paths where conflicts occurred.

E.1 Equivalence of edit and create commands

To be able to determine whether two edit or create commands are equivalent, we introduced a list of samples

in the program, which is a list of paths. When the program detects an edit(π,X) or a create(π,X) command
as an update, it looks for a path γ in the list for which A(π) = A(γ) (in case it is detecting updates at replica
A). If it finds such a γ, it will attach its number in the list to the command. If not, it appends π to the list
and attaches the new number.

That way, two edit or create commands are equivalent if and only if they are applied to the same path
and they have the same sample–number.
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E.2 Notation

The program uses the ordinary directory/directory/file notation for paths. For commands, it uses:

EF0/path for edit(path,XFile)
ED0/path for edit(path,XDir)
CF0/path for create(path,XFile)
CD0/path for create(path,XDir)
RM/path for remove(path),

where 0 is the sample–number for which A(Samplelist(0)) = A(path).
When marking conflicting commands, it uses ‘<->A3’ if the command conflicts with the 3rd command in

sequence SA and ‘==>A3’ if the command SA[3] must precede the current command but it already conflicts,
so the current command cannot be applied.

E.3 Examples

In this section we provide some examples of how the program runs. In the first section of the output the
program lists the flat representation of the filesystems (the original and the two replicas). The next section
is the result of the detection of updates and conflicting commands. It lists the samples and the sequences of
commands (SA and SB). Then sequences S∗

A and S∗

B follow which should be applied to replicas to propagate
non–conflicting commands. In the last section it lists paths where there were conflicts.

E.3.1 Example 1

This example is the case discussed in section D.2.

File Synchronizer

by Elod Csirmaz 21.07.2000

#==List of filesystems============

---Original Filesystem------------

FS-O/dir/

FS-O/dir/file

---Replica A----------------------

---Replica B----------------------

FS-B/dir/

#==Update-detection and conflicts=

---Edit Samples-------------------

---Sequence O->A------------------

0:RM/dir/file

1:RM/dir/

---Sequence O->B------------------

0:RM/dir/file

#==Reconciliation=================

---Sequence A->O’-----------------

---Sequence B->O’-----------------

1:RM/dir/

#==Paths of conflicting commands==

==================================

As we can see, a situation like this does not cause conflicting updates.
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E.3.2 Example 2

This example shows a case when we have conflicts because a conflicting command must precede another
command. /dir/file was modified in replica A.

File Synchronizer

by Elod Csirmaz 21.07.2000

#==List of filesystems============

---Original Filesystem------------

FS-O/dir/

FS-O/dir/file

---Replica A----------------------

FS-A/dir/

FS-A/dir/file

---Replica B----------------------

#==Update-detection and conflicts=

---Edit Samples-------------------

0:FS-A/dir/file

---Sequence O->A------------------

0:EF0/dir/file <->B0

---Sequence O->B------------------

0:RM/dir/file <->A0

1:RM/dir/ ==>B0

#==Reconciliation=================

---Sequence A->O’-----------------

---Sequence B->O’-----------------

#==Paths of conflicting commands==

dir/

dir/file

==================================

Actually, in this case the synchronizer cannot do anything, because all commands conflicted.

F Soundness proofs for individual laws

In this section we provide examples of how algebraic laws can be proved. The method we use is to consider
as many cases as necessary to be able to predict the result of each command in the law. For example, if
the law contains paths π and πsub then we will consider 22 cases; see below. (Note that we listed all cases
considering how πsub can relate to π and if they have children or a parent. Also, we considered the case when
F (π) has only one child and it is F (πsub) since in that case, modifying F (πsub) can make F (π) childless.)

If the law contains an edit command, we also distinguish between files and directories. If we determine
the result of the sequence of commands of the left side in each case and this is the same as that of the right
side, then the law holds.

Now we provide an example for the proof of law 18. We will only investigate the left side of the law,
since the right side always gives the broken filesystem.

Case 0
F (parent(π)) = ⊥

F (π) = ⊥

childless(π)
F (parent(πsub)) = ⊥

F (πsub) = ⊥

childless(πsub)

After edit(πsub, xDir):
BROKEN

After edit(πsub, xDir) and remove(π):

BROKEN

Case 1
F (parent(π)) = AF ile
F (π) = ⊥

childless(π)
F (parent(πsub)) = ⊥

F (πsub) = ⊥

childless(πsub)

After edit(πsub, xDir):

BROKEN

After edit(πsub, xDir) and remove(π):
BROKEN

Case 2
F (parent(π)) = ADir
F (π) = ⊥

childless(π)
parent(πsub) = π

F (πsub) = ⊥
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childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 3
F (parent(π)) = ADir
F (π) = ⊥

childless(π)
F (parent(πsub)) = ⊥

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 4
F (parent(π)) = ADir
F (π) = oF ile
childless(π)
parent(πsub) = π

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 5
F (parent(π)) = ADir
F (π) = oF ile
childless(π)
F (parent(πsub)) = ⊥

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 6
F (parent(π)) = ADir
F (π) = oDir
childless(π)
parent(πsub) = π

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 7
F (parent(π)) = ADir
F (π) = oDir
childless(π)
F (parent(πsub)) = ⊥

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 8
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 9
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = oF ile
childless(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = xDir
childless(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 10
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = oDir
childless(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = xDir
childless(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 11
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = oDir
children(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π)
parent(πsub) = π

F (πsub) = xDir
children(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 12
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ⊥

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 13
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = AF ile,parent(πsub) 6= π

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 14
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = ⊥

childless(πsub)
After edit(πsub, xDir):

BROKEN
After edit(πsub, xDir) and remove(π):

BROKEN

Case 15
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = oF ile
childless(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = xDir
childless(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 16
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = oDir
childless(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = xDir
childless(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 17
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = oDir
children(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π)
F (parent(πsub)) = ADir ,parent(πsub) 6= π

F (πsub) = xDir
children(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 18
F (parent(π)) = ADir
F (π) = oDir
children(π), only one
parent(πsub) = π

F (πsub) = oF ile
childless(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π), only one
parent(πsub) = π

F (πsub) = xDir
childless(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 19
F (parent(π)) = ADir
F (π) = oDir
children(π), only one
parent(πsub) = π

F (πsub) = oDir
childless(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π), only one
parent(πsub) = π

F (πsub) = xDir
childless(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 20
F (parent(π)) = ADir
F (π) = oDir
children(π), only one
parent(πsub) = π

F (πsub) = oDir
children(πsub)

After edit(πsub, xDir):
F (parent(π)) = ADir
F (π) = oDir
children(π), only one
parent(πsub) = π

F (πsub) = xDir
children(πsub)

After edit(πsub, xDir) and remove(π):
BROKEN

Case 21
BROKEN

After edit(πsub, xDir):
BROKEN

After edit(πsub, xDir) and remove(π):
BROKEN


